Factorizacion
Enviado por Programa Chuletas y clasificado en Matemáticas
Escrito el en español con un tamaño de 1,72 KB
Factorizar significa descomponer en dos o mas componentes.
Por ejemplo :
Factorizar los siguientes números
15= 3x 5
27=3 x 9
99 = 9 x 11
6 = 3 x 2 y así
En álgebra se emplearan técnicas que nos ayuden a factorizar expresiones.
Como por ejemplo :
Diferencia de Cuadrados:
Se conocen como diferencia de cuadrados, expresiones de este tipo X² - Y² = (X -Y )(X + Y)
Y esa es la manera de factorizarlas.
Veamos algunos ejemplos.
4X² - 9Y² = (2x + 3y) (2x - 3y)
25X² - 49Y² = (5x - 7y) (5x + 7y)
c² - 9Y² = (c + 3y) (c - 3y)
De la misma manera lo podemos aplicar a números por ejemplo:
9 - 4 = (3 + 2) (3 - 2)
121 - 81 = (11 + 9) (11 - 9)
64 - 16 = (8 - 4) (8 + 4)
Lo que se hizo fue buscar la raíz cuadrada de cada número y como están restados, se procedió a factorizarlos.
Incluso si los números no tuvieran raíz exacta, se puede emplear el mismo procedimiento.
Y también se aplica a números fraccionarios.
(Como el editor no permite el símbolo raíz cuadrada emplearemos R, así R2 seria raíz cuadrada de 2).
Por ejemplo:
5 - 2 = (R5 + R2) (R5 - R2)
9 - 5 = (R9 + R5) (R9 – R5)
11 - 8 = (R11 - R8) (R11 + R8)
125 - 94=( R125 + R94) (R125 - R 94)
(a+2x+1)² - ( x+2a+a²)² = (a+1 )² - (x+2a+a²)² =
{( a+1 )+(x+2a + a²)} - {( a+1 )-(x+2a + a²)} Respuesta
Por ejemplo :
Factorizar los siguientes números
15= 3x 5
27=3 x 9
99 = 9 x 11
6 = 3 x 2 y así
En álgebra se emplearan técnicas que nos ayuden a factorizar expresiones.
Como por ejemplo :
Diferencia de Cuadrados:
Se conocen como diferencia de cuadrados, expresiones de este tipo X² - Y² = (X -Y )(X + Y)
Y esa es la manera de factorizarlas.
Veamos algunos ejemplos.
4X² - 9Y² = (2x + 3y) (2x - 3y)
25X² - 49Y² = (5x - 7y) (5x + 7y)
c² - 9Y² = (c + 3y) (c - 3y)
De la misma manera lo podemos aplicar a números por ejemplo:
9 - 4 = (3 + 2) (3 - 2)
121 - 81 = (11 + 9) (11 - 9)
64 - 16 = (8 - 4) (8 + 4)
Lo que se hizo fue buscar la raíz cuadrada de cada número y como están restados, se procedió a factorizarlos.
Incluso si los números no tuvieran raíz exacta, se puede emplear el mismo procedimiento.
Y también se aplica a números fraccionarios.
(Como el editor no permite el símbolo raíz cuadrada emplearemos R, así R2 seria raíz cuadrada de 2).
Por ejemplo:
5 - 2 = (R5 + R2) (R5 - R2)
9 - 5 = (R9 + R5) (R9 – R5)
11 - 8 = (R11 - R8) (R11 + R8)
125 - 94=( R125 + R94) (R125 - R 94)
(a+2x+1)² - ( x+2a+a²)² = (a+1 )² - (x+2a+a²)² =
{( a+1 )+(x+2a + a²)} - {( a+1 )-(x+2a + a²)} Respuesta