Clasificación de los receptores gps
Enviado por Programa Chuletas y clasificado en Otras materias
Escrito el en español con un tamaño de 9,92 KB
3. Descripción DEL SISTEMA GPS SECTOR ESPACIAL SECTOR DE CONTROL SECTOR USUARIO El sistema
GPS consta de tres sectores: los satélites, el sistema de control terrestre de los mismos, y los receptores de usuario que recogen las señales enviadas por los satélites y determinan las coordenadas del punto sobre el que se encuentran. En la aplicación de la metodología GPS se diferencian esos tres elementos.
3.1 SECTOR ESPACIAL Está compuesto por la constelación de satélites NAVSTAR (Sistema de Navegación para Tiempo y Distancia) los cuales transmiten: señal de tiempos sincronizados, parámetros de posición de los satélites, información del estado de salud de los satélites sobre las dos portadoras y otros datos adicionales. La constelación actual consta de entre 27 y 31 satélites distribuidos en seis órbitas con 4 ó más satélites en cada una. Los planos orbitales tienen una inclinación de 55 grados y están distribuidas uniformemente en el plano del ecuador. Con una órbita de 12 horas sidéreas, un satélite estará sobre el horizonte unas cinco horas. El objetivo es que al menos 4 sean visibles al mismo tiempo, a cualquier hora del día y desde cualquier punto de la superficie terrestre. Los lanzamientos se llevaron a cabo en dos generaciones. De la primera de ellas, Bloque I, ya no quedan satélites operativos pues la vida media de los satélites era de 6-7 años. Todos los satélites actuales pertenecen al Bloque II-A, II-F y II-R. La altitud de los satélites es de unos 20100 Km. A su paso por el zenit del lugar. Orbitan con un periodo de 12 horas sidéreas por lo que la configuración de un instante se repite el día anterior con una diferencia entre día sidéreo y día solar medio (3m 56seg). Los seis planos orbitales se definen con las letras A,B,C,D,E,F y dentro de cada órbita cada satélite se identifica con los números 1,2,3,4,5. Así cada satélite está perfectamente identificado, existiendo diversas formas de hacerlo: 1. Por el número de lanzamiento del satélite o número NAVSTAR (SVN) 2. Orbita a la que pertenece y número de posición dentro de ella 3. Número de catálogo NASA 4. Identificación Internacional: año de lanzamiento, día juliano, tipo 5. Número IRON. Número aleatorio asignado por NORAD. 6. Código Seudo Aleatorio (PRN). El sistema usual de identificación es por el Código Seudo Aleatorio del satélite. Tema 12 Aplicaciones Topográficas del G.P.S. M. Farjas 9 Un satélite pueda quedar fuera de servicio civil por avería o envejecimiento de los paneles solares, falta de capacidad de los acumuladores, averías no conmutables de los sistemas electrónicos, agotamiento del combustible de maniobra o por intereses militares. La información temporal y de posición están íntimamente relacionadas. El sistema GPS se basa fundamentalmente en la medida del tiempo de la forma muy precisa. Para ello los satélites contienen varios osciladores de alta precisión, con estabilizadores de máxima precisión capaces de dar medidas del tiempo del orden de 10 –12 , y de 10 –14 en los de última generación (bloque III, todavía no operativo). Una referencia de tiempos defectuosa afecta al conjunto de la información del receptor.
La escala de tiempo se denomina GPS Time, siendo la unidad el segundo atómico Internacional. El origen de la escala GPS se ha fijado como coincidente con el UTC a las 0 horas del día 6 de Enero de 1980. El tiempo universal coordinado UTC es un tiempo atómico uniforme, cuya unidad es el segundo atómico (se trata de un híbrido entre tiempo atómico y tiempo universal). Señal de los satélites Cada satélite va provisto de un reloj-oscilador que provee una frecuencia fundamental sobre la que se estructura todo el conjunto de la señal radiodifundida por el satélite. Los satélites poseen una serie de antenas emisoras que funcionan en la banda L del espectro electromagnético, que son las que recibiremos en nuestros receptores. El satélite emite información sobre dos movimientos ondulatorios que actúan como portadoras de códigos, la primera se denomina L1. La segunda se denomina L2. El poder utilizar las 2 frecuencias permite determinar por comparación de la diferencia de retardos, el retardo ionosférico, difícilmente predecible por otros sistemas. Sobre estas dos portadoras se envía una información modulada compuesta por tres códigos y un mensaje de navegación, generados también a partir de la frecuencia fundamental correspondiente El primer código que envían es el llamado código C/A (coarse /adquisition) y ofrece precisiones que en la actualidad oscilan entre los 3m y los 10 m, y el segundo es el código P (precise) con precisiones métricas. Estos códigos son usados para posicionamientos absolutos, en navegación; y el tercero L2C de precisión similar al C/A. En cuanto al mensaje, éste consta de 1500 bits, correspondientes a 30 segundos. Está divido en 5 celdas. En cada celda encontramos información relativa a: CELDA 1 Parámetros de desfase del reloj y modelo del retardo ionosférico y troposférico. CELDAS 2-3 Efemérides de los satélites. CELDA 4 Aplicaciones militares. CELDA 5 Almanaque. Sobre la L1 se suelen modular los dos códigos vistos, el C/A y el P además del mensaje correspondiente. En la L2 sólo se modula también el mensaje de Tema 12 Aplicaciones Topográficas del G.P.S. M. Farjas 10 navegación además de los códigos L2C y P.
3.2 SECTOR CONTROL La misión de este sector consiste en el seguimiento continuo de los satélites, calculando su posición, transmitiendo datos y controlando diariamente todos los satélites de la constelación NAVSTAR. Había 5 centros: Colorado, Hawai, Kwajalein, Isla de Ascensión e Isla de Diego García. Desde 1995 hay 10 estaciones monitoras. Todas ellas reciben continuamente las señales GPS con receptores bifrecuencia provistos de relojes de H. También se registra una extensa información entre la que cabe destacar: • Influencia que sobre el satélite tiene el campo magnético terrestre. • Parámetros sobre la presión de la radiación solar. • Posibles fallos de los relojes atómicos. • Operatividad de cada uno de los satélites. • Posición estimada para cada uno de los satélites dentro de la constelación global Todos estos datos se trasmiten a la estación principal situada en Colorado Spring (USA) donde se procesa la información, obteniendo de esta manera todas las posiciones de los satélites en sus órbitas (sus efemérides) y los estados de los relojes que llevan cada uno de ellos para que con posterioridad los mismos satélites radiodifundan dicha información a los usuarios potenciales.
3.3 SECTOR USUARIO Este segmento del sistema GPS varía según la aplicación que se esté tratando. Está formado por todos los equipos utilizados para la recepción de las señales emitidas por los satélites, así como por el software necesario para la comunicación del receptor con el ordenador, y el postprocesado de la información para la obtención de los resultados. Hemos de tener en cuenta que el sistema GPS fue creado por el Departamento de Defensa de los Estados Unidos con fines exclusivamente militares y por ello el objetivo principal del GPS es el posicionamiento de vehículos y tropas militares en cualquier parte del mundo. Las primeras aplicaciones civiles llegaron de la mano de la Navegación, en lo que hoy conocemos como gestión y control de flotas.
CLASIFICACIÓN Si los clasificamos en función del observable que emplean para determinar la posición del punto distinguimos entre receptores de medida de pseudodistancias (código), que son los navegadores, y los receptores de medida de pseudodistancias y fase (receptores topográficos y geodésicos). Los receptores también se pueden clasificar en receptores que registran la frecuencia L1 (código C/A), o bien registran conjuntamente las frecuencias L1 y L2 (receptores bifrecuencia). Un esquema general (cuando el sistema Anti-Spoofing está activado) sería el siguiente: La principal diferencia entre unos equipos GPS y otros, atiende a la precisión que permiten alcanzar: • NAVEGADORES Unicamente reciben datos de código C/A por la portadora L1. Correlacionan el código y determinan la pseudodistancia entre el receptor y satélite, dando como resultado final coordenadas tridimensionales de la situación geográfica del receptor (X, Y, Z), en el Sistema Geod´sico WGS-84 L1 L1 L2 Receptores de medida de pseudodistancias (código) y fase Receptores Topográficos y Geodésicos Receptores Monofrecuencia Receptores Bifrecuencia Receptores de medida de pseudodistancias (código) Navegadores Código C/A Navegadores Uso Civil Código P Uso Militar Tema 12 Aplicaciones Topográficas del G.P.S. M. Farjas 12 Son simples receptores GPS muy sencillos en su uso y de bajo precio. Funcionan autónomamente y consiguen precisiones por debajo de los 10 metros (sin Disponibilidad Selectiva SA-Selective Availability). • GPS SUBMETRICOS Son equipos GPS que reciben los mismas observables que los anteriores. Difieren de los anteriores al trabajar diferencialmente, un equipo de referencia y otro móvil en modo cinemático o en modo estático. Se trata de los equipos anteriores con admisión de correcciones. Las precisiones que se pueden conseguir se encuentran por debajo de 1 metro, en función del tipo de receptor y los algoritmos de cálculo. Las aplicaciones se encuadran en los campos de la cartografía y GIS Receptor GPS monofrecuencia de código. • GPS MONOFRECUENCIA DE Código Y FASE Estos receptores toman datos de la portadora L1 en sus dos modalidades código C/A y fase. Son equipos que trabajan en modo diferencial en tiempo real y en diferido (post-proceso). La precisión aumenta considerablemente respecto a los anteriores siendo de 1cm. + 2ppm., lo que nos permite utilizarlo en aplicaciones Topográficas. Otras de sus carácterísticas son: