Chuletas y apuntes de Matemáticas de Universidad

Ordenar por
Materia
Nivel

Identidades trigonometricas

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 1,71 KB

a) sn2x+cos2x=1 b) 1+ctg2x=csc2x
sn
2x= 1-cos2x ctg2x=csc2x-1
cos
2x= 1-sn2x

c) 1+tg
2x=sc2x d) scx= 1/cosx
tg
2x=sc2x-1

e) cscx=1/snx f) tgx= snx/ cosx

g) ctgx= cosx/snx
ctgx= 1/tgx ) tg(2x)= 2tgx/1-tg
2x


i) tg
2x= 1-cos (2x)/ 1+cos (2x) j) sn (2x)= 2 sn x * cosx

k) sn
2x= 1-cos 2x / 2 l) sn(2x)=2tgx/1+ tg2x

m) cos
2x= 1+cos2x/2 n) cos (2x)= 1-tg2x / 1+ tg2x

ñ) cos
2(2x)= cos2x-sen2x


otras

1. sen(x y)= senx cosy seny cos x
2. tg(x y)= tgx tgy/ 1 tgx. tgy
3. sen x cos y= sen (x+y) + sen (x-4)
4. sen x sen y cos (x-y) - cos (x+4)
5. cosx cos y= cos (X+y) +cos(x-4)
cos (x y) = cosx coy sen x sen

Lagrange

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 1,5 KB

function y= lagrange(FuncionInterpolada,inicio,fin,npuntos,PuntosInterpolar)

h=(fin-inicio)/(npuntos-1);
vx=[inicio:h:fin]; %Obtenemos los puntos que nos dan
vy=feval(FuncionInterpolada,vx); %Se evalua la funci´on en los puntos que nos dan

%Hace que en principio la matriz de salida valga 0, y tenga la misma dimensi´on que PUNTOSINTERPOLAR
y=zeros(size(PuntosInterpolar));

%Este for realiza el sumatorio (en matlab las matrices empiezan en el 1)
for i=1:npuntos

%hacemos que lx valga uno para que las multiplicaciones no salgan nulas
lx=ones(size(PuntosInterpolar));

%Este for realiza el productorio
for j=1:npuntos
if i~=j %i debe ser distinto de j
lx=lx.*(PuntosInterpolar-vx(j))/(vx(i)-vx(j));
end
end

%realiza
... Continuar leyendo "Lagrange" »

Soluciones hoja 3

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 7,21 KB

Soluciones hoja 3
1) i) c
->(0)=(1,0,1) c->(pi)=(-1,0,pi+1) c->(t)=(-sent,cost,1) ||c->(t)||=? ((-sent)2+(cost)2+1)=? 2 L=?0pi ? 2dt= ? 2[t]0pi= pi? 2 ii) se hace = L= ? 2ln( ? 2+1)/4+3/2 iii) se hace = L=? 3[epi/2-1] 2) L =?ab ||c->´(t) ||dt c->(t)=(x,f(x)) dc->/dx(1,f´(x)) x(t)=t y=f(x(t))=f(t) ||c->´(t)|| =? (1+f´(x)2) L =?ab ?(1+f´(x)2)dx 3)i) x=rcosteta y=rsenteta c->(t)=(x(t),y(t)) c´->(t)=(dx/dt,dy/dt) ||c->´(t)|| =?( (x´)2+ (y´ )2)=?(( r´)2+ ( teta´)2) dx/dt=dx/drdr/dt+dx/dtetadteta/dt=costetar´-rsentetateta´ dy/dt=dy/drdr/dt+dy/dtetadteta/dt=sentetar´+rcostetateta´ x´2=cos^2tetar´2+r^2sen^2tetateta´2-2rsentetacostetar´teta´ y´2= sen ^2tetar´2+r^2 cos ^2tetateta´2+ 2rsentetacostetar´teta´ x´2+y´2=
... Continuar leyendo "Soluciones hoja 3" »

Problemas de contorno y transformada de laplace

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 3,84 KB

Transformada de Laplace:
L{f(t)} : integr(entre o e infinito)e-stf(t)dt
L{ 1} :1/s
L{t
n}: n!/sn+1 (s>0)
L{e
at}: 1/s-a (s>a)
L{sen(kt)} : k/(s
2+k2) (s>0)
L{cos(kt)} : s/(s
2+k2) (s>0)
L{sh(kt)} : k/(s
2-k2) (s>módulo de k), K pertenece a R
L{ch(kt)} : s/(s
2-k2) (s>módulo de k), K pertenece a R
Propiedades:
L es lineal
1er teorema de traslación: L{e
atf(t)}=F(s-a)
Función escalón unidad: U(t)=1 si t>=0,0resto
2o teorema de traslación: L{f(t-a)U(t-a)}=e
-asL{f(t)
L{t
nf(t)}=(-1)ndnF(s)/dsn
L{f
(n(t)}=snF(s)-sn-1f(0)-...-f(n-1(0)
L
-1 es lineal (inversa, no1/L...)
Producto de convolución: f # g= integral(entre 0 y t)de:
f(tau)g(t-tau)dtau
Teorema de convolución:L{f # g}=L{f} L{g}=F(s)G(s)
Transformación de una integral: L{integr entre 0yt
f(
... Continuar leyendo "Problemas de contorno y transformada de laplace" »

Asintotas

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 1,74 KB

1) Se determina la primera derivada de la función.
2) Se determinan los valores para los cuales la primera derivada se hace Cero.
3) se estudia el signo de la primera derivada.
4) se determinan maximos ó minimos.
5) se hallan las imagenes de los valores en la funcion y se representan graficamente.
Puntos de Inflexión.
1) se calcula la segunda deriva de la función.
2) se determinan los valores para los cuales f''(x)=0
3) se estudia el signo de f''(x).
4) se determinan los ptos de inflexion y concavidad y convexidad.
5) se halla las imagenes de los valores y se representa graficamente.
*se calculan asintotas
Asintotas Verticales.
a) se determian el dominio de la funcion. Si existe valores que no satisfacen el dominio,
ellos representan una
... Continuar leyendo "Asintotas" »

Fases de Resnick

Enviado por zulima y clasificado en Matemáticas

Escrito el en español con un tamaño de 4,82 KB

Fases de desarrollo de la comprensión. Fase 1: Descomp. canónica. Reconocim. de las descomp. canónicas de los números. El esquema parte-todo se aplica a las U, D, C… Caract: Se ven los números comp. de unidades de diferentes órdenes(U,D,C). Se usa el 10 como unidad iterativa. Caract. de esta fase pueden identificarse en modo en q alumnos usan estos procedim. en dif. contextos intentando resolver dif. tipos de tareas: -Contexto oral: Recitar oralmente la serie numérica. Lectura y escritura de números. -Contexto cardinal: Establecer la cantidad y decir q núm. está repres. con difs. materiales concretos (bloques multibase, ábacos, regletas…) y usar esa repres. para realizar operaciones -Aritmética informal. Procedim. inventados por alumnos

... Continuar leyendo "Fases de Resnick" »

Ll,ñl,ñl,ñl,

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 36,26 KB

4.- (25 puntos) Determine y justifique los efectos macroeconómicos de un alza en la tasade impuesto sobre la renta que pagan las familias, sobre las siguientes variables:
a) rentabilidad del conjunto de proyectos de inversión de las empresas b) consumo del sector privado c) demanda por dinero d) ahorro del gobierno e) multiplicador del gasto autónomo (multiplicador keynesiano)

Usted debe dividir su análisis macroeconómico en tres partes:
(i) Efecto Impacto (recuerde que debe fundamentar - matemática o analíticamente- cualquier desplazamiento de una función de equilibrio) (ii) Mecanismo de transmisión (o Proceso de ajuste)(iii) Nuevo equilibrio macroeconómico.
Nota: Si lo desea, puede cambiar el orden y dejar (ii) para el final.

Imagen
i)Efecto
... Continuar leyendo "Ll,ñl,ñl,ñl," »

Tasa de variación media acumulativa formula

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 7,2 KB

suceso complementario
A,es aquel que verifica sí y sólo si no se verifica A.Ejem:suceso A lanzar un dado y que salga 2-4-6 y el suceso complementario
A sería los nº que no han salido.

concepto variaciones estacionales de una serie temporal,son aquellas variaciones periódicas de periodo igual o inferior a un año.Si el periodo marco es el año pueden oservarse variaciones estacionales de periodo cuatrimestal, trimestral o mensual,si el periodo marco es el mes,pueden observarse variaciones estacionales de periodo semanal diario,etc.

correlación lineal simple se calcula mediante la fórmula

r=Formula ,donde m11 es la covarianza,m20 y m02 son las varianzas respectivas de la X y la Y. El valor r está comprendido entre -1 y +1.Su valor asoluto nos indica... Continuar leyendo "Tasa de variación media acumulativa formula" »

Integrales basicas

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 1.005 bytes

Tabla integrales





 tabla derivadas
n=0 | x
n=nxn-1 | x=1 | k·f(x)=k·f'(x) | f(x)+g(x)=f'(x)+g'(x )senx=cosx | cosx=-senx | tg x = 1+tg2x | ex=ex
ax=ax·ln a | ln x = 1/x | logax=1/x·1/ln a | ?=1/2?
f(x)·g(x)=f'(x)·g(x)+f(x)·g'(x)
f(x)/g(x)= f'(x)·g(x) - f(x)·g'(x)/g(x)
2

Aplicaciones lineales

Enviado por Programa Chuletas y clasificado en Matemáticas

Escrito el en español con un tamaño de 1,63 KB

TIPOS DE APLICACIONES LINEALES o HOMOMORFISMOS: f: A¡æB
-
INYECTIVA o MONOMORFISMO: dim Kerf = 0
-
SUPRAYECTIVA o EPIMORFISMO: dim Imf = dim B
-
BIYECTIVA o ISOMORFISMO: inyectiva y suprayectiva
-
ENDOMORFISMO: dim A = dim B
-
AUTOMORFISMO: endomorfismo y biyectiva
SUBESPACIO VECTORIAL (<...>): x + y

PARA COMPROBAR SI ESTAN EN COMBINACION LINEAL COLOCAR EN FILAS , PARA EL RESTO, POR COLUMNAS

SUMA DIRECTA: A + B = IR3 , A ¡û B = 0
FORMULAS:
dim Ei = dim Kerf + dim Imf
dim Ef = dim Imf + n¨¬ ecuaciones
Rg f = dim Imf
Y=AX (Y-vectores Ef, X-vectores Ei )


CAMBIO DE BASE:
Para hallar P: Hallamos las imagenes de los vectores de la base B¢¥ y los ponemos en combinacion lineal de los vectores de la base B:
f(v1¢¥, v2¢¥,...,v
n¢¥) = v1 +
... Continuar leyendo "Aplicaciones lineales" »